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It is known that plastic deformations of monocrystals are determined by the presence of 
dislocations in them. In solids the density of dislocations is usually rather high: 10G-108 
cm -2. Therefore, if deviations of crystal deformation from the average value between dis- 
locations are not taken into consideration, it is convenient to use the model of continuously 
distributed dislocations. In [I, 2] a transition to such a model was carried out by averaging 
the equations of linear theory of elasticity, in which single dislocations were considered. 
In that case the flows of linear defects remained undetermined. We believe that it is 
interesting to consider the given problem in terms of the general system of continuum 
mechanics equations and the concepts of thermod}mamics of irreversible processes. First we 
consider the quantities which will help us to describe continuum deformation. 

Considerable displacements of continuum components occur under deformation. In that 
case microscopic structure of a solid remains the same: atoms are in the sites of the 
lattice. As a result of short-range action of molecular forces, the stresses arise that are 
determined by the interaction between the nearest atoms, or, in other words, by the deforma- 
tion of a crystal's unit cell. To describe the given deformation we may use a vector |= 
(here and further indices run the values of i, 2, 3) which is a vector of elementary trans- 
lations in undeformed crystal. The atoms that are connected by the vector ~ are moving 
with the velocity of the medium at a given place. The equation for the "frozen in" vector ~ , 
averaged over physically infinitesimal volume, has the form [3] 

~Idt  = (l'V) v, ( t )  

where  v i s  t h e  v e l o c i t y  o f  a s u b s t a n c e  a t  a g i v e n  p l a c e  and t h e  p a r e n t h e s e s  d e n o t e  a s c a l a r  
p r o d u c t .  Le t  us i n t r o d u c e  a s e t  o f  v e c t o r s  W = c o n n e c t e d  w i t h  1 ~ by t h e  r e l a t i o n s  

(Wq~) = 6 ~  (2)  

(6~ ~ is the Kronecker symbol). From (i) and (2) for W ~ it follows that 

dWSdt = - ( w ~ v v )  (3)  

The symbol (W~Vv) denotes the convolution W~Svk/SX i. Here and in what follows repeated 

latin indices imply summation. Equations (i) and (3) are valid in the absence of dissipa- 
tive processes; (3) can be written as 

ow~/at = [~ o ~ w = l -  v (~w~). (~ )  

If curl W ~ = 0, then W ~ can be represented in the form~Vr The functions ~(x) = const 
are the equations for crystallographic planes in an undeformed crystal. A set of three func- 
tions Ca(x) determines the number of the atom located at a point x. Then with the appropriate 
normalizing of r the vector W: modulus is equal to the reverse distance between crystallo- 
graphic planes at a given place and the vector W = is directed along the normal to them. The 
line integral along a closed contour is equal to zero: 

f W~dx = O. (5)  

When rot W ~ # O, W = can no longer be represented in the form of a gadient of certain scalar 
functions in the whole space, but locally the meaning of~ TM remains the same. In that case 
condition (5) is violated and the integral is equal to the number of singularities of the 
field W=(x), which are covered by the contour. Using the Stokes theorem we write 
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~ Wadx = SrotW~dS 

and introduce a new function fl=~= rot W ~. The vector ~ describes the density of the type 
dislocations. If we consider separate dislocations, then ~is the sum of two-dimensional 
~-functions, so that the direction of ~= coincides with the direction of the dislocation 

Here from (3) it follows that d(~W=dx)[d t=O,  where d / d t  line at a given point. implies 

that the path of integration moves together with the substance. This means that the disloca- 
tions also move together with the substance, which is similar to conservation of velocity 
circulation in a liquid [4]. Taking the operation of curl in terms of (4), we obtain the 
law of conservation for f~ 

O~=/Ot = cuF1 [vfl=] �9 ( 6 ) 

Note that if ~/describes the edge dislocation, then (W~)i=0: for the screw dislocation 
(W=~=)~0.1 In that case from (3) we have d((W=~)~)/dt = 0. Dislocations are introduced 
in [5J with the help of curl W = in somewhat another succession. 

It is clear from (3) that in order to find displacements of the continuous points from 
6W% we must follow the development of the deformation process in time. For small deforma- 
tions, however, we can write the connection 6W = with the displacements u, introduced in the 
linear theory of elasticity. Displacements for a small period of time 6t are expressed 
through velocity v as ul= ~t, then from (4) it follows 

~ W " =  [u r o t W  ~] - -  v ( u W ~ ) .  

o 

For an undeformed lattice, i.e., when W = =W =, we have 
o 

W ~ W~Ou~/Ox~. 
~ = - (7) 

In the general case, to describe the dynamics of continuum we use a standard set of 
hydrodynamic variables (density p, veloc2ty v, and entropy s), for which the laws of censer- 
vation are valid: 

O p/Ot + divpv = O; (8) 

pdvJdt = O6a/Ox~; ( 9 ) 

ds/ dt = O, (10) 

where aik is the equilibrium stress tensor and Eq. (i0) is written for the entropy by a 

gram. For p and W = the connection p = m/v a = m(W I, %V2 W 3) is valid (v a = (W ], W 2, We) -I 

is the volume of the crystal's unit cell). The expression (W I, W 2, W3) indicates a mixed 

product. Here from (3) and (8) follows dm/dt = 0. If there are no defects in the medium, 
then m = const is simply a mass of atoms of a unit cell. 

The energy must depend on combinations of %u which are invariant with respect to a 
rotation of a body as a whole. Such are GaB = (%V~W~). A convolution with respect to in- 

o 

dices a and ~ can be performed with the help of the fundamental tensor G~8 = (L]~), where 

i F corresponds to an undisturbed crystal. Note that for elastic deformations to be signi- 

ficant (Uik % i, Uik is the deformation tensor [i]), the stresses o 0 % ~ (~ is the shear 

modulus) are necessary. From the experiment of [6] it is seen, however, that a stress 

relaxation due to plastic flow occurs at o T % 10-4o0, which corresponds to sufficiently small 

deformations. Therefore, in writing down the elastic energy it is quite possible to use 

Hooke's law, i.e., ~e ~ (6G~) 2. As an example let us write the expression for the energy 
in an isotropic case: 

o o 

eel,= ~ ~j,~ ~2 ~6G~) ~ -6 ~G~vG~6G~6G w) 
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(X and p are the Lame coefficients). In that case if we use connection (7), we obtain a con- 
ventional expression for elastic energy, determined through Uik [i]. 

We use the following method for calculating the stresses. For the density of the full 
energy U the following law of conservation is valid: 

OU/Ot + d i v g  = 0 (11)  

( n  i s  t h e  e n e r g y  f l u x  d e n s i t y ) .  W r i t i n g  U = pe + pv2/2  and u s i n g  (8)  and ( 9 ) ,  we s ee  t h a t  
in  o r d e r  f o r  (11)  t o  be t r u e ,  we must  t a k e  

o 

where qi = p(e + v2/2)vi + OikV k- 

W% the derivatives of W * (for 

energy). Then for de we write 

ode/dt = e~,OvdOx~+ d i v ( H - - q ) .  (12)  

In the general case internal energy will depend on, besides 

example, ~, which corresponds to the dislocation core 

= u:i d W i  ~, (o~df~{ ~ ~, (13)  

Here w~ = 8e/3WV; m9 = 8e/8~9. Substituting (3), (6), (i0) and (13) into (12), we obtain 
i I 1 I 

the expression 

~ - -  ~ ~ "~ ( 1 4 )  
= W~ D ~ / D ~  ~, 

where DE/DW ~ = pw = + curl p w = is the variational derivative. Other quantities, which may 
determine the energy, are taken into account in a similar manner. For example, for the 
volume concentration of point defects 

Oc/Ot+ d i v c v =  0 (15)  

is valid. For the concentration per gram we have n = c/ip and respectively 

tin~dr = 0 ( 16 ) 

I n  (13)  ~dn (~ i s  t h e  c h e m i c a l  p o t e n t i a l  o f  p o i n t  d e f e c t s )  must  be added .  For  s i m p l i c i t y  
l e t  us  c o n s i d e r  d e f e c t s  o f  one k i n d .  I t  f o l l o w s  f rom (12)  and (16)  t h a t  p o i n t  d e f e c t s  do 
not contribute to stresses. 

In (4) and (6) the vector f~ is the sum of 6-functions corresponding to separate dis- 
locations. In this sense Eqs. (4) and (6) are "microscopic." Passing to "macroscopic" 
equations, we must average .f~ over physically infinitesimal volume. The volume is selected 
with respect to a specific configuration of dislocation lines, distance between them, and 
scales L, on which a characteristic change in physical quantities occurs (see [2]). In the 
simplest case <f~> can be represented in the form 

<Q~> ~f~ + curl ms. 

where f~ is the density of slightly curved dislocation lines, so that Iv~/IQII -!! >> L >> X 

(% is the distance between the dislocations) and m s is the dislocation moment's density 
vector, which describes the loops of radius r, so that r << L. The vector mY: is equal to 
zero outside a solid and is expressed through an average dislocation moment of the ].oop s=l 
and density of the loops n ~ in the following manner: 

H l  ~z ~ S~lZ ~:. 

The following equation is valid for the density of dislocation loops: 

@n~/3t+ div n%'=~O. 

The vector of dislocation moment s ~ corresponds to a plate stretched over the vectors 
"frozen in" into a substance and, then, satisfies the equation following from (I): 

ds~/dt ---- -- (s~Vv) + s ~ div v. 

(17) 

(18) 

(19) 
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Finally, from (17)-(19) we obtain the equation for the moment's density 

dm~/dt = - -  (m'Wv), (2 0 ) 

which coincides with the equation for W% 

The general scheme for introducing dissipative processes into hydrodynamics equations is 
as follows: dissipative flows and sources are introduced into the equations for different 
hydrodynamic quantities. Determining in terms of these equations the law of variation for 
entropy, we obtain a dissipative function. In case of small flows, they can be expressed 
through generalized thermodynamic forces according to the Onsager relations [7]. 

In the elasticity theory problems the presence of the dissipation, connected with the 
dislocations movement, means that the dislocations move with a velocity different from that 
of the continuum. Let us introduce into (6) the velocity of "slipping" VU: 

0ft-~/Ot = rot,[ (v + V~) ft~]. 

For the latter equation to be compatible with the equation for W ~, a corresponding term must 
be included in (3): 

dW~/dt = - -  (W:Vv) + [V~ r~ W~]" (21)  

E q u a t i o n  ( 1 )  f o r  1 ~ mus t  be  changed  a c c o r d i n g  t o  ( 2 )  and ( 2 1 ) .  I n  t h a t  c a s e  m a c r o s c o p i c  d e -  
formation will be determined not by an averaged deformation of a unit cell (i.e., W ~ or I~), 
but by a hydrodynamic velocity v of the substance. In the general case two types of move- 
ment relative to a crystal lattice are possible for dislocations, namely, slipping and 
creeping over. While creeping over, the dislocation is the source (discharge) of point de- 
fects. Therefore, besides an ordinary dissipative flow i, it is necessary to introduce the 
source Q into (15): 

Oc/Ot + div (cv + i) ---- O. 

The relation between Q and movement of dislocations is purely geometrical: 

Similarly we must introduce the flow 
dissipative function R we obtain 

9 = X(e ,  vt  

into the equation for the energy. Finally for the 

(z 

where DE/DW = is the same variational derivative as stands in (14) for Oik. The relation be- 
tween generalized flows and generalized forces can be written in the form [4] 

i = 5  vr (22)  

Here N==~=/fQ=[; F==De/DW=+~I=/~. The matrix A is the matrix of kinetic coefficients. 

Formally we must take into account the introduction of dissipative processes into the stress 
tensor. To this end, into the equations for pulse (9) we must add Tik, corresponding to a 
nonequilibrium part of the stress tensor. From the form of dissipative function we obtain 
that to the given generalized flow Tik there corresponds the generalized force of the form 
8vi/Sx k. If there is no any "built-in" vector in the medium, it seems impossible to connect 
a tensor quantity 8vi/3x k with vector quantities i, j, V= in a linear, with respect to 
8vi/Sx k, approximation. In the given case we have only one vector quantity N==~=/IQ=], 
which is a pseudovector. Therefore, the ~eneralized flows i, ~, V = are determined only by 
v~,vT,[N=F=]; In its turn, F = is determined by the equilibrium part of the stress tensor 
aik, which is just considered here. The nonequilibrium part of the stress tensor will in- 
fluence the crystal's dynamics only through Eq, (9). We ignore these processes, considering 
viscosity of solids and velocity gradients to be rather small. And in the general case the 
flow V=!will depend on all three generalized forces, which stand in the right-hand column of 
(22). 
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Let us discuss the case, where ~ = V~ = 7T = 0, i.e., the movement of dislocations is 
determined by the stresses existing in the medium. In that case the expression for the 
velocity of dislocation flow has a simple form 

V~ =. b e,jk~j D~,DWk ( 2 3 )  

(b a is the component of the matrix ~, corresponding to the mobility of dislocations). Taking 
into account the expression for the stresses (14) and connection (2), we find Ds/DW. ~ = 

it 

Oiks ~. Substituting in such form DE/DW = into (23), we obtain V? = b=~, 
I 

where fa i = eij k~ 

l~N~,which exactly corresponds to the expression for the Pich-Keller force, if we put 

l = equal to Burgers vector [I]. 

According to the fact that in a crystal a dislocation can move in strictly defined direc- 

tions, for mobility we should write the tensor bik = Ocnin k + bH(6ik - nit k) (b~, b E are the 

coefficients of mobility in the plane of slipping and creeping over, and n.~ = ~/I| ~ I)" Let 

us consider the dissipative processes associated with the motion of dislocation loops. If 
the centers of the loops can move relative to the substance, this corresponds to the intro- 
duction into (18) of the dissipative flow j=: 

an=/at + d i v ( n ~ v  + j~) = O. 

For dislocation moment we add to (19) the source ~, which corresponds to a turn of the loop 
and/or change in its size: 

ds~'/dt = - -  (s~Vv) + s ~ d iv  v + ~% 

Finally instead of (20) we obtain 

dm~/dt = - -  (m~Vv)  - -  s ~ d iv  j= + n ~ %  

Here growth (collapse) of dislocation loops takes place due to a variation in concentration 
of point defects; therefore, the corresponding source should be introduced into (15) 

oc/at+aivc,, En (~ )/vo. 
c% 

For compatibility of the obtained equations with the equation for W% instead of (31) we 
have 

dW~/dt = _ ( W : V v ) - - s = d i v j  = + n~g ~. 

We calculate the dissipative function 

~R = E { ( fv) (w=,  ~) + ~ :  (,,,~ + crho) l .  

In the simplest cases we can write 

j: ~ v ( w : s ~ ) ,  n : V  - (w ~ + gV/vo) .  

The relation w~ = Oiks ~ yields 

Here the second term in the right-hand side is responsible for the growth (collapse) of the 
loops due to a nonequilibrium concentration of point defects. The same role is played by a 
normal component Oiks ~. The tangential part leads to a turn of loops (to the appearance of 

screw component of the loop's dislocation line). 

For the motion of the center of the loops we have 

j, N a ( ~z~ ~ )/axe. 

The part proportional to the 3Ok~/3x i coincides completely with'the force acting on the loop 

from [i]. The term proportional to Ok~s i is also of interest. It corresponds to the 
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fact that at constant stresses there exists a flow of loop determined by the gradient from 
the dimensions. In the general case the introduced dissipative flows and generalized forces 
must be inserted in relation (22). 

As an illustration of the described system of equations let us consider the deformation 
of a crystal, uniformly filled by immobile straight edge dislocations of one kind. Let a 
sample have a rectangular sectionin the plane (x, y) and be extended along the z-axis. We 

assume the problem to be two-dimensional and consider the deformations W * and W2: curl W I = 

f~, curl W2 '= 0. The dislocations are directed along the z-axis Oz (~ = (0, 0, ~)) and are 

distributed with a constant density (~ =const). In the case of stationary deformations we 

have the equilibrium equation 8Oik/SX k ='0. The equality to zero of the forces applied at 

the boundary yields the boundary condition oiknkl F = 0, where n k is the normal vector. We 

select the vectors ~V= for an undistorted sample in the form~V I = (l/a, 0),~V 2 = (0, l/a) (a 

is the lattice parameter). Then for 6W ~=W ~ -%V~ we obtain 6W' = (0, -~x/2), ~W 2 = (~x/2, 

0). Here we note that for the given deformations the stresses in the whole crystal are equal 
to zero: ~ = 0. The given type of deformations corresponds to the presence of "extra" 
crystallographic half planes, and the lines of the edge of these half planes are edge dis- 
locations. 

As the second example let us consider a stationary flow of a crystal with dislocations 
under the action of the applied shear stresses. The sample arrangement and dislocations 
configuration are the same as in the previous example. A shear OxyIF = F is applied to the 

crystal surface, which is perpendicular to the y-axis. We will assume that the dislocations 
density is sufficiently small, so that the deformations due to the applied stresses are much 
larger than the deformations caused by dislocations: QL << F/~a (L is the system's dimension 
along the x-axis). Finding ~W ~ from the equilibrium equation, and, consequently, Oik, we 
determine #~} from (23). The velocity of the medium is found from the stationary equation 
(21), whidh is previously linearized with respect to ~W~: 

(*~Vv)= [w~] 
An expression for the velocity has the form v x = b~a2Fy (b is the coefficient of the disloca- 
tion mobility). Note that the dislocations move with the velocity V = bFa, whence the sub- 
stance velocity can be expressed in terms of V: v x = Vflay, which corresponds to the conven- 

o 

tional formula for the plastic deformation velocity s = BNv d (see [2]), where B is the Burgers 

vector, N is the dislocation density, and v d is their velocity. Such plastic flow of the 
sample corresponds formally to the flow of viscous liquid with the viscosity coefficient 

n, = (b~a=) -I 

it 
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